

ECE484 Audio Signal Processing Final Project Report

Matthew Haussmann
MUCS | V00827158

haussmannm@gmail.coM

ABSTRACT

A Stereo Chorus/Flanger plug-in was implemented in the JUCE C++

framework with delay line effect architecture using linear

interpolation. This report introduces the “Matt’s Epic Delay”

project, goes over deliverables and specifications for the project,

walks through the design and its process before moving into the

components. Evaluation and testing are discussed, and the prototype

plugin is presented.

1. INTRODUCTION

During the fall semester of 2020 at UVic, this project was
completed for the class ECE484 Audio Signal Processing
instructed by Dr. Peter Driessen. The project was to
implement an audio effect that the class had studied
during the semester on your own chosen platform. The
effect I implemented was a chorus/flanger delay line
effect unit as a plug-in for a Digital Audio Workstation
(DAW) using the JUCE C++ framework. My initial
proposal for the project was to implement a phase
vocoder in JUCE, but my focus changed largely because
a future project for which implementing a phase vocoder
would have largely helped with also changed. The name
“Matt’s Epic Delay” is a tongue-in-cheek double entendre
because of this switch of decision.

JUCE and the Projucer app help audio
developers create multi-format audio plug-ins with ease
by handling much of the background work and many
library implementations of useful functions and packages.
It is able to output many plug-in types, including VST,
VST3, AU, AAX, or as a standalone program. JUCE was
used under a free educational license.

The chorus effect is an effect that uses delay line
modulation to create depth and the illusion of multiple
signals slightly out of tune with each other, similar to a
“choir” of the input signal. A flanger effect uses the same
implementation, but different parameter values to
produce a sweeping comb filter effect. When used
tastefully, these effects create texture and interest on the
input signals, and when parameters are set to extreme
ranges then they can create heavily distorted and
unrecognizable outputs that can be used for sound design
or other purposes.

A frequency-shifting vibrato effect can also be
created when feedback is set to zero and dry/wet is set to
100% wet.

2. DELIVERABLES AND SPECIFICATIONS

A number of controllable features are specified
as the deliverables for the project. The adjustable
parameters for controlling the plugin’s algorithm include
a dry/wet dial for controlling the output mix of the
unaffected “dry” input signal and the affected “wet”
signal. A dial for controlling the feedback gain coefficient
of the delay line tap in included. Included Controllable
parameter dials of the delay line modulation Low
Frequency Oscillator (LFO) are: The depth AKA the
sweep width of the oscillator; the rate at which the LFO
oscillates (0.1-20Hz); the left/right LFO phase offset
between the left and right stereo channels (0 - 2*pi). As
well, a menu box for choice between a Chorus effect and
a Flanger effect, which adjust the delay line time settings
between relatively longer (1-5ms) and relatively shorter
(5-30ms) times, respectively. These parameters are all
controllable from the plug-in’s Graphical User Interface
(GUI).

An implementation of statefulness that works
with mainstream DAWs to allow for saving the current
parameter settings and coming back to them when
reloading the project is included as a feature that utilizes
XML files.

As a deliverable as a whole, the format of the
project is an Audio Units plug-in and a VST3 plug-in
files with an associated Xcode file.

3. DESIGN AND DESIGN PROCESS

The design of the plug-in algorithm took a natural
progression. I decided I wanted a usable, real-time
product that could be used on multiple platforms. As I
have interest in developing audio plugins and in C++ as a
programming language, the JUCE framework was
decided on as a starting point for the project
implementation since it satisfied each of these

mailto:haussmannm@gmail.coM

requirements. Alternative choices for platforms could
have been in MATLAB or on a microcontroller such as
Ardiuno or Raspberry Pi, however the prospect of using
my own work in a DAW in my future creative musical
endeavors was a strong allure which won out.

The implementation of the algorithm was the
next step. I began by implementing a gain function to get
control of the input and output signal, which eventually
morphed into the dry/wet parameter. After that was the
implementing the delay line, which led to the feedback
control as well. Once the delay line was working and
adjustable, an LFO was implemented to modulate it.

The LFO’s design needed an implementation of
inter-sample interpolation. I decided on Linear
Interpolation (LI) for simplicity's sake, which is much
better than nearest-neighbour interpolation but can still
introduce noise and aliasing to the output signal. LI
creates a line between two successive samples, and places
the inter-sample fraction on that line and returns the value
at the location. There are a number of other interpolation
methods available, many of which produce better results
than LI. Second-order polynomial interpolation uses three
successive samples in its calculation. There are many
types of what is known as cubic interpolation, where the
simplest type uses the four samples surrounding the
interpolation location.1 For a prototype plug-in, LI was
satisfactory.

Once the LFO and its associated linear
interpolation were working, a second LFO was
implemented with a phase offset parameter for the left
and right stereo channels. Descriptions of these
component modules are the topic of the next section.

4. COMPONENTS

The program has multiple components, as does the effect
algorithm. I will begin with the structure. The
PluginEditor component deals with the GUI and is
separate from the PluginProcessor component, which is
the guts of the plugin and contains the effect algorithm.
Both files use implementations of dedicated classes,
MattsEpicDelayAudioProcessorEditor and
MattsEpicDelayAudioProcessor which inherit from
JUCE’s AudioProcessorEditor and AudioProcessor
classes respectively. The constructor methods of each
class of each file set up the parameters and instantiate
variables. The editor uses the JUCE Slider class,
AudioParameter classes, and a paint method to generate
and work with the graphics of the GUI and to link
functionality with the parameters.

The processor for this algorithm works mainly
with two functions, a prepareToPlay function, and the
processBlock function. The prepareToPlay prepares the

1 Reiss, J. D., & McPherson, A. P. (2015). Chapter 2: Delay Line
Effects. In Audio effects: Theory, implementation, and application (pp.
21-56). Boca Raton, FL: CRC Press.

computer state for playing audio when starting/stopping.
It initializes data for the current sample rate of the
project, setting parameters including LFOPhase,
CircularBufferLength, CircularBufferLeft,
CircularBufferLeft, and CircularBufferWriteHead. It also
Zeros the new allocated memory to clear any garbage
data that might be present.

The circular buffers need to be just that, circular,
so when readhead and writehead pointers exceed index
ranges then they must be looped back to the beginning or
end of the buffers. This is implemented using IF
statements

The processBlock is where the input audio
signal processing happens. First it gets the number of
audio channels (two), clears the buffers, and then begins
to loop. Within the FOR loop: It uses two circular buffers
with readhead and writehead pointers; calculates signal
feedback generates and applies the LFOs with the phase
offset, rate, and depth parameters; uses a helper Linear
Interpolation function for inter-sample indexing; and
calculates dry and wet amounts of signal to output.

The first LFO was created by dividing the
variable mLFOPhase, scaled between -1 and 1, by the
rate parameter multiplied by the sample rate, and then
wrapping it around back to negative one when it reached
the top. The output of this was multiplied by 2*Pi and
evaluated within a sin() function. This was then
subtracted from the smoothed delay time to create the
constant warbling and frequency shifting character of the
effects.

Once the parameters were mapped and mostly
working, it was time to work on the flanging. This
involved doubling up the LFO, one for left channel and
one for right channel to create the stereo effect with a
controllable offset.

The right LFO was created and calculated from
the LFOPhase plus the phase offset parameter. Both
LFOs are then mapped to appropriate delay time ranges,
with the mapping being chosen between the chorus range
(5-30ms) and the flanger range (1-5ms). The delay time
in samples is calculated separately for left and right
channels by multiplying the sample rate with the mapped
output phases of the LFOs.

5. PROTOTYPE

The prototype [1] is a fully working plug-in
effect unit that can be used in a standard mainstream
DAW for real-time audio processing. This is the format
of many audio tools today.

Figure 1. The prototype GUI on light flanger settings.

6. EVALUATION AND TESTING

Of course, testing is a natural part of the development
process, so many tests of the modules were performed as
they were being coded. However, the end results are
where the interest lies. As input signals are manipulated
and processed, the results are audible. The question is, are
they musically useful sounds? The different settings of
the parameters produce different results, and particularly
the delay time setting choice between a chorus effect and
a flanger effect changes this too. Testing materials
included a dry drum loop, a simple guitar phrase, and the
first phrase of Suzanne Vega’s a cappella song Tom’s
Diner, which is a classic and canonical testing song for
audio development.

Beginning with the chorus setting, turning the
dry/wet and feedback dials to medium, the rate and depth
to low-mid, and the phase offset at a minimum produced
a pleasant spreading of Vega’s voice, though there is a
subtly noticeable metallic quality to the sound. For the
drum loop, turning the dry/wet up to full and increasing
the rate a small amount created a similar spread, but an
odd-sounding wavering can be heard in the sounds,
particularly in the tails created by the medium reverb.
This is the result of the LFOs’ increased rate; I would
suggest a slower LFO rate for a texturally useful
application to drums.

For the Vibrato effect, feedback and phase offset
values are set to zero, dry/wet is at 100% wet, and depth
and rate are the adjustable variables. I set the rate to
medium-slow and the depth to medium-low, and Tom’s
Diner was sounding a little kooky as Vega’s pitch was
modulated at a constant rate, making the ability to
distinguish the centre pitch rather difficult. I suggest a
slightly faster rate, and a lower depth for a capella
singing. However, even with adjusting the parameters
slightly, because it is at a constant rate there is no
musically-informed phrasing, where a proper singer often
begins their notes as a straight tone, and then adds vibrato
once the pitch is more established. Volume is also
reduced and increased as the pitch is modulated up and
down, so without an implementation of that in the

algorithm it will continue to sound unnatural particularly
on human singing voices. For the guitar track, I turned
the rate and the depth up a small amount, and the result
sounded like a proper guitar vibrato pedal. It does not
sound like a guitar player’s string-bending induced
vibrato, but similar facts to the singing voice can be said
about musical playing of the guitar, as guitar players do
not manually bend every single note they play, especially
not at a constant rate.

Moving on to a lighter application of the flanger
setting, I set the phase offset to nearly in the middle, set
dry/wet to 100% wet, feedback to mid-high, and turned
the rate and depth to medium. Tom’s Diner is given a
lovely stereo spread and pleasing ethereal texture, as well
as a sounding somewhat in a pipe. The comb filtering
created by the repeated feedback is the cause of this.
When applied to the guitar, the pipe effect is less
noticeable but the pleasing qualities are preserved. This is
a successful example of a very musical application and
could be used in a professional production to good effect.
It does not matter in a testing situation if chorus or
flanger is chosen as a setting because there is no repeated
feedback signal. However, in a performance setting, it
would be advisable to set it to flanger to reduce the
latency, as the 100% wet signal has a shorter delay time
than the chorus setting.

As the flanger is a very versatile effect, I turned
the depth, rate, and feedback up, and applied it to Tom’s
Diner, creating a highly affected “electronic” sounding
textural flanging effect. This could be applied well in
electronic music, where the intent of creating “natural”
sounds is discarded in favour of more novel sounds.

Next, by turning down the rate to less than one
second, and turning up the depth, to around 75%, an
effect often referred to as the “jet sweep” was created on
the drum loop. This sounds very similar to the drums
heard on Led Zeppelin’s song “Kashmir,” though the
effect is more pronounced than on Kashmir.

Beyond traditional musical applications, I turned
many of the parameters up high to listen to the extreme
ranges of the effect. Setting to chorus with high feedback,
rate, phase offset, but low depth, a spread out, wispy,
metallic, and electronic reverb effect was produced
largely due to the higher reverb feedback gain coefficient.
Since delay is modulated between 5-30ms on the chorus
setting, sitting in the middle of that range is around 17ms.
Reverb is perceived usually at repeated delay times of
less than 10ms, however the drawing out of the signal is
the most noticeable feature with these settings.

Lastly, since JUCE has created parameter
classes that can be automated within a DAW, I played
with this by beginning with a normal rendition of Tom’s
Diner, but quickly turning every parameter up to almost
full, Suzanne’s voice became completely unrecognizable
as it was mangled by the high depth, rate, and feedback.
Listen: The only recognizable musical feature to be
preserved was a sense of rhythm, as the input signal was

fed into the mangling flanger and changed the texture at
each new note onset according to the rhythm of the
melody of Tom’s Diner. This extreme setting could only
be useful in sound design applications or for humorous
effect, but I found it was fun to explore the extremes of
the effect unit I created.

Lastly, to test the statefulness implementation, I
simply changed the parameters from the default settings
and saved the Ableton Live project, then reloaded it. The
values I changed remained the same instead of being reset
to the default values.

7. CONCLUSION

Summarizing, the strength of this design is definitely the
flanger effect with properly adjusted settings for the
desired effect, and could be used in a professional setting
in the right circumstances. The vibrato settings on the
guitar could be applied to other instruments in a real-time
performance setting to good effect by choosing the
flanger setting to reduce latency. The implementation has
some metallic qualities to the sound for the chorus, and as
this is usually not as desirable, it is less useful. The
extreme ranges of the parameters could possibly also find
application. If this was to be released, I would implement
more complex interpolation methods and test the
differences between the methods to hear the results
myself, but as there is no way to test without having two
side-by-side implementations, I cannot comment on the
difference, and am relying on outside information sources
for the suggestions on linear interpolation’s comparably
audible qualities.

The design satisfied both my vision and the
specifications I set, and the algorithm was implemented
with success in a manner of a natural progression during
the development process. I am happy with how this
project turned out.

8. REFERENCES

[1] Reiss, J. D., & McPherson, A. P. (2015).
Chapter 2: Delay Line Effects. In Audio effects:
Theory, implementation, and application (pp.
21-56). Boca Raton, FL: CRC Press.

[2] Zölzer, U. (2011). DAFX: Digital audio effects.
Chichester: Wiley.

[3] Course Catalog | Kadenze. (n.d.). Retrieved
November 30, 2020, from
https://www.kadenze.com/courses/intro-to-audio
-plugin-development

