
Exploring MIDI Specs with JUCE
CSC497 PROGRESS REPORT #1

Matthew Haussmann
UVic | MUCS | V00827158
haussmannm@gmail.coM
February 26, 2021

1. INTRODUCTION

I seek to develop a utility application which displays
incoming and outgoing MIDI messages in
human-readable text. This program will include a
prototype implementation of Property Exchange, which is
part of the recent MIDI 2.0 Capability Inquiry (MIDI-CI)
specification. Property Exchange is a method for getting
and setting various data (called Resources) between two
devices.

The application will be implemented in the
JUCE C++ framework. JUCE and the Projucer app help
audio developers create multi-format audio applications
with ease by handling much of the background work and
many library implementations of useful functions and
packages. It is able to output many plug-in types,
including VST, VST3, AU, AAX, or as a standalone
program. JUCE is used under a free educational license.

MIDI 2.0 (2.0) is a recent expansion to the MIDI
1.0 (1.0) specification which was first proposed in 1983.1

There have been several updates or other expansions to
the MIDI protocol over the years, such as MIDI
Polyphonic Expression (MPE) or the specifications for
different transports such as MIDI BLE for Bluetooth.
MIDI 2.0 has been touted as the “the biggest advance in
music technology in decades'' by the Midi Manufacturers’
Association (MMA.2 However, due to how recently the
specifications were released, there are only a couple items
currently available on the market that have any 2.0
capabilities, and the USB Implementers’ Forum (USB-IF)
only released the transport specification in June 2020
making it the first and only transport that currently
supports 2.0. The 2.0 specification was adopted January
19, 2020 by the MMA, only a short time before.3

The advances of 2.0 needed to be widely
adoptable, thus 2.0 is fully backwards compatible, and
achieves this through MIDI-CI. Unlike 1.0, 2.0 is a
bidirectional connection and conversation between
devices, which provides the infrastructure for MIDI-CI to
be implemented. MIDI-CI has 3 P's: Profile
configuration, Property exchange, and Protocol
Negotiation. Profile configuration aims to create
automatic and standard mappings between virtual
instruments or effects and the devices we control them
with. Property exchange can be viewed as a more detailed

list of capabilities and controllable parameters and
settings. Protocol negotiation is the talk between devices
that decides what protocol to use, where two 2.0 devices
will know what the capabilities of the other is. Upon
encountering a MIDI 1.0 device, a 2.0 device will decide
to speak 1.0 with that device. 2.0 has room for future
expansion, with data fields left unspecified in order to
future-proof the spec along with its backwards
compatibility.

A new communication protocol was proposed
along with 2.0, called the Universal Midi Packet (UMP),
which can contain every type of 1.0 and 2.0 messages
that have been specified. Another advance is the option to
prepend a new Jitter Reduction (JR) timestamp to
improve timing accuracy; this mechanism uses a
sender-based clocking between both 2.0 devices in
communication. The UMP is of various sizes depending
on the message, with the largest being 128-bit. Compared
to the original 1.0 message maximum of 24-bit this is a
huge difference which allows for the new capabilities that
2.0 has to offer.4

There are expanded tuning capabilities,
articulation properties, more bits for velocity (2^16-1 vs.
2^7-1 velocity values), per-note controls (e.g. per-note
pitch bend), and a simplification of many old 1.0 abilities
and communications, such as SysEx messages. 1.0 has 16
MIDI channels, and 2.0 introduces 16 groups of 16
channels, for a total of 256 MIDI channels. Rules have
also been developed for how 1.0 and 2.0 messages are
translated when one device doesn't speak 2.0. So 2.0
controllers will have greater expressive capabilities, and
the framework provided by 2.0 should increase the
devices’ usability for greater ease of use. Thus, the hope
is more time spent in a fluid, expressive, creative mindset
as opposed to dealing with technical processes and setup.

Property Exchange works with a payload of data
in the form of a JSON file, and over 1.0 transport it uses
SysEx messages. SysEx stands for System Exclusive, and
is one of the original ways that 1.0 allows manufacturers
to implement their own unique message data within a
MIDI message.5

There are currently two developer tools that
have been created to aid in development of 2.0-ready
software and hardware. There are called MIDI 2.0 Scope,
and MIDI-CI Workbench, both developed by individual

mailto:haussmannm@gmail.coM

members of the 2.0 spec development team. However,
neither of these tools are available to to public yet, and
are only available to corporate members of the MMA
until the MMA can “validate interoperability with real
shipping products.”6

2. GOAL

To develop to the 2.0 specification will require a
strong understanding of 1.0 messages, data, and methods
of implementation. Programming MIDI messages was my
first experience programming, way back in middle school
on my Yamaha Clavinova electric keyboard on a
barebones MIDI event editor with some audio effects and
basic mixing capabilities including level, pan, and a
master EQ. That began my fascination with MIDI.
Moving beyond programming the data into programming
the software itself is the process. C++ is common in
audio development so JUCE is an appropriate vehicle. I
am aiming to understand each MIDI message type and its
use, and how they are packaged and sent over transports.

I have been advised by members of the 2.0
development team that Property Exchange and Profiles
work over 1.0 transports,7 but I want to understand why
that is the case. So, by understanding the structure of
how MIDI data is managed, delivered, and received then
I can begin to build my own implementation of Property
Exchange based on the how JUCE has implemented the
current 1.0 functionality. This will be based on reading
the official documents released by the MMA outline the
specifications for Property Exchange, including the white
paper on the common practices.

As there basically no hardware devices available
for 2.0, my implementation will be all virtual, but the 1.0
component of the application will function with
hardware.

3. PLAN & FUTURE ACTION

For my application, I have begun work with
JUCE tutorials to implement and understand MIDI
messaging.8 Much of the basic MIDI functionality is
handled by JUCE classes and methods, so the what I have
so far is a working app that displays most incoming MIDI
1.0 messages to the app’s console, with a selection box
for the available MIDI devices and a graphical keyboard
in case there are no hardware devices attached. See image
(1) above.

(1) GUI for the MIDI utility app

The timestamps are calculated with a difference
between when the application was launched, and when
the incoming messages are received.

I have discovered system API’s for MIDI, and
have looked into Apple’s CoreMidi API which has
adopted 2.0 capabilities with their newest operating
system MacOS 11.0, called “Big Sur.”10 JUCE has not
released updated 2.0 wrapper functions for operating
system API’s yet. In an online forum, a JUCE admin
mentioned they were waiting for system API’s to be
released before JUCE releases their wrapper functions.9
In a comment to one of my questions on midi.org, one of
the 2.0 development team members mentioned that he
hopes Microsoft will release their support for 2.0 in
2021,4 so JUCE’s support will likely follow that release.

With this in mind, I had initially planned to not
rely on any preexisting 2.0 code. However, I looked into
JUCE’s library implementation of the CoreMidi
framework (folder entitled CoreMidi.framework) and
discovered a header file called
“MIDICapabilityInquiry.h”11 This file seems to be the
beginning of JUCE integrating 2.0 into its framework. I
have not digested it’s contents, but the file says © 2018
by Apple inc. See (2) below.

(2) First lines of MIDICapabilityInquiry.h

I plan to delve into this file to see if it will be possible to
integrate it into my project.

There are a couple more tutorials that JUCE
offers that will help me understand how MIDI events are
created and handled, so I will move forward with
incorporating those too.

Once these are completed I believe I will have a
better understanding of how 1.0 messages are handled,
which will set me up to begin diving into the developer
white papers and specification papers. There were five
papers for 2.0 published by the MMA and the
Association of Musical Electronics Industry (AMEI) in
February 2020. I will search the three of the papers
related to Property Exchange for relevant materials and
begin working from there.

4. INITIAL RESULTS

The step of getting a working application to
display 1.0 messages came easily with JUCE tutorials,
however the exact implementation structure is obfuscated
by JUCE’s API so I seek to dive deeper into the 1.0
messages. Having a working prototype brings good hope
that I will be able to incorporate further functionality into
the application, and having leads to follow up on is
helpful for the direction of my research efforts.

Further reports will include descriptions of the
code I am using as I come to understand more in-depth
how JUCE functionality fits together. Without JUCE and
the Projucer (3) I would be without much support. As I
am still waiting to be registered in the CSC497 course I
am thankful for my project supervisor’s support and
interest in the project, as well as his support throughout
my entire degree.

(3) The Projucer launchpad GUI

5. REFERENCES

[1] Kent, M., Bomers, F., & Porter, B. (2019,
November 27). Mike Kent, Florian Bomers, &
Brett Porter - youtube.com. Retrieved January 5,
2021, from
https://www.youtube.com/watch?v=K2dAIvrI8z
g

[2] Rogerson, B. (2020, December 26). MIDI 2.0
spec confirmed: "the biggest advance in music
technology in decades". Retrieved December 28,
2020, from
https://www.musicradar.com/news/midi-20-spec
-confirmed-the-biggest-advance-in-music-techn
ology-in-decades

[3] USB-IF Publishes USB Device Class
Specification for MIDI Devices v2.0. (2020,
July 16). Www.usb.org. Joe Balich. Retrieved
from https://www.usb.org/

[4] Balster, E. Retrieved February 16, 2021, from
https://imitone.com/discover-midi/

[5] AMEI, & MMA. (2020, February 20). Official
MIDI Specifications. Retrieved February 19,
2021, from
https://www.midi.org/specifications/midi-2-0-sp
ecifications/property-exchange-specifications

[6] Porter, B. (2021, January 27). Re: Looking for
Project Ideas: is there MIDI 2.0 software or
programming language support? [Online forum
comment]. Retrieved February 19, 2021, from
https://www.midi.org/forum/7601-looking-for-pr
oject-ideas-is-there-midi-2-0-software-or-progra
mming-language-support#reply-7632

[7] Bomers, F. (221AD, January 18). Looking for
Project Ideas: is there MIDI 2.0 software or
programming language support?

[8] Tutorial: Handling MIDI events. Retrieved
February 23, 2021, from
https://docs.juce.com/master/tutorial_handling_
midi_events.html

[9] Walker, T. H. (2020, July 7). Core MIDI.
Retrieved January 14, 2021, from
https://developer.apple.com/documentation/core
midi?language=objc

[10] Ryanblock, & t0m. (2020, July 14). MIDI 2.0
Support in JUCE. Retrieved February 19, 2021,
from
https://forum.juce.com/t/midi-2-0-support-in-juc
e/40711

[11] Apple. (2018). MIDICapabilityInquiry.h. Apple
Inc.

https://www.youtube.com/watch?v=K2dAIvrI8zg
https://www.youtube.com/watch?v=K2dAIvrI8zg

