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ABSTRACT

Development into the algorithms used for Automatic
Chord Recognition has proceeded collectively for the last
20 years. In our work, we review the MIR techniques that
have been used in recognition algorithms over the years
and implement these components with additional novel
changes to explore the workings of ACR systems.

1. INTRODUCTION

Chords and chord sequences are fundamental components
of music that contribute to the structure and progression
of a song. The recognition of chords in music is a skill
that musicians develop through a combination of musical
theory training—to understand the rules and best
practices in music, and ear training—to recognize these
concepts while listening to music. The ability to identify
and categorize chords accurately has many data mining
applications such as the classification of music, tracking
similarities between pieces of music, or creating songs
that feel familiar to listeners. The identification of chords
is difficult and potentially subjective as experts cannot
always agree on the chords in a piece.

Automatic Chord Recognition (ACR) is the process of
using Music Information Retrieval (MIR) techniques to
detect and identify the chords within music. The field of
MIR has been developing methods of chord recognition
for at least 20 years [1]. The need for ACR comes in part
from the difficulty of identifying chords by hand, and that
the process can be ambiguous and subjective by nature.
Successful ACR algorithms are highly desired in the
aforementioned data mining applications to perform
difficult recognition quickly at high scale for large music
libraries. Furthermore, other practical applications for
ACR could be the automatic generation of lead sheet
notation for musicians that do not have the ability or the
time to transcribe by ear.

2. RELATED WORK

In November 2019 a paper titled "20 Years of Automatic
Chord Recognition From Audio" [1] reviewed the history
of ACR in the field of MIR, outlining multiple techniques

that were developed and used together to improve the
performance and accuracy of ACR over the years. This
paper also describes a more "data-driven" approach that
uses machine learning and large amounts of data with
little use of MIR techniques. While data-driven models
are growing in popularity, there is much to learn from the
history of rule-based ACR systems, which combined
multiple MIR components into one cohesive system.

Inspired by this paper, we have designed and realized the
implementation of a system based-on MIR principles.
This system extends MIR components outlined in [1] by
following a modular approach that incorporates ideas
from previous MIR techniques shown to be successful in
ACR. Our system follows this design instead of the
neural network-based approach. In related works, chord
progression analysis and prediction are often part of an
ACR system, even one without neural-networks. These
use either probability-based or knowledge-based
algorithms with Hidden Markov Models [9] to smooth
the sequences of chord labels for a piece of music.
However, this has not been realized by our system due to
time constraints and difficulties faced by one of the
members in the team.

Modular ACR approaches have been reviewed before in
related works such as the Zenz & Rauber [8]
implementation. However, our system introduces a novel
chroma feature that specifically extracts and makes use of
the bass note of the chord to improve recognition
accuracy. In the original pitch class profile proposed by
Fujishima [10], a twelve dimension vector representing
the intensities of the twelve semitone pitch classes is
used. This has been the standard system in ACR and is
seen in all implementations reviewed in [1], but does not
make use of the bass note, despite being an essential
feature of a chord.

3. BACKGROUND

Musical chords are a harmonic structure consisting of a
stack of individual pitches. Chords are hierarchical by
nature of their stacked intervals, meaning one chord could
contain the all notes of a different but related chord.
Intervals are built of a number of semitones (half-steps)



and are usually stacked by major or minor thirds, which
consist of four and three semitones respectively. When a
chord has only three notes in it it is called a triad. When
there are four it is referred to as a seventh chord.

Our system has implemented only searches for common
triads and sevenths. Common triads are major, minor,
diminished, and augmented chords.

- Major triads consist of a minor third on top of a
major third.

- Minor triads are a major third on top of a minor third.

- Diminished triads are two minor thirds.

- Augmented triads are two major thirds.

We look for three types of seventh chords in our system:
dominant sevenths, major sevenths, and minor sevenths.

- A dominant seventh is a major triad with an
additional minor third on top.

- A major seventh is a major triad with a major
third on top.

- A minor seventh is a minor triad with a minor
third on top.

This is shown in Figure 1 below:

Figure 1: Hierarchies of Recognizable Chords

A musical octave has twelve semitones forming what is
known as the chromatic scale, repeating after the twelfth
note. This is derived from the fact that an octave is
double the fundamental frequency of the first pitch. That
is, the frequency of the first note in the scale is twice the
frequency of the same note an octave below and half the
frequency of the same note an octave above. Working
with this octave repetition, the notes are treated as “pitch
classes,” meaning it does not matter what octave the note
is in. Thus in our method, the pitches with the same note
name from different octaves are wrapped (folded) into a
single twelve-note vector, called a chroma vector.

Figure 2 shows octave equivalence on a piano keyboard:

Figure 2: Octave Folds of Notes

Another aspect of chord recognition is handling the
harmonics of each individual note. A musical note played
by a real world instrument has harmonics related to the
fundamental note (unless it is a generated sin or cosine
tone). These harmonics do not fall under the same pitch
class of the same note. This comes from the harmonic
series, a concept from physics dealing with waves—in
this case sound waves.

The fundamental frequency of a note, for example A =
440Hz, is the basis of the harmonics of that frequency,
which are all integer multiples of the fundamental. The
first overtone is found at 2 x 440Hz = 880Hz, which is
also an A but an octave above. The second is 3 x 440Hz =
1320Hz; which is not an A, but an E, yet it is present
when the note A (440Hz) is played on a real world
instrument.

Furthermore, the sounds of different instruments are
characterized by differing amplitude amounts for each
harmonic, so saxophones will contribute different
overtone amplitude strengths than flutes will.

This leads to difficulty when trying to identify the notes
of a chord due to the harmonics of the “true” note should
all be attributed to the note at the fundamental frequency.
Yet, the harmonics give their energy to notes which are
different from the fundamental frequency, lowering
recognition accuracy. Methods to address this issue are
discussed later in this paper.

Another issue that arises in chord classification is the
subjective annotation of chords, since there can be
multiple correct musical interpretations of a single chord,
by traditional music theory rules. This means that
musicians and experts will sometimes differ in their
opinions about how to label a chord. This issue is
especially present in Jazz music, due to the genre’s
prolific use of complex chords with more than four notes,
and often leaving notes out of a chord being played. This



is why chord classification can be an ambiguous target,
sometimes resulting in discrepancy between separate
human analyses [11].

We hope our project will be able to be evaluated using
clear objective measurements such as classification
accuracy, but we will likely run into subjective chords
and chord progressions that are an issue for our
algorithms and the humans determining the result [1].
The accuracy can be calculated by counting the number
of matching samples between the predicted and the
ground truth chords and dividing it by the total number of
samples as done in [17].

It was our goal to develop an algorithm that reflects
advancements made in the field of ACR, and provides an
agreeable analysis of chords as determined by the
musically perceptive members of our group.

4. METHODS

The modules that compose our system are connected as
shown in Figure 3:

Figure 3: Module Connection Overview

This modular approach is constructed as a series of
Python Notebooks. Many sections were developed
independently from each other and modified later to
operate together as a combined module (the final
notebook is titled CombinedModule).

This process of development was somewhat accidental or
forced by a lack of collaboration in Python Notebooks.

Some services exist, such as Google Colaboratory, but we
had issues with dependencies and disk space to store
music files. Improvements for future work might include
researching recommended forms of notebook
collaboration, ideally methods that do not require a
central server, such as Git.

Each module will be introduced and explored, then the
combined system will be discussed.

Tuning Estimation is performed using Fast Fourier
Transforms (FFT) across the entire song. A window size
of 1 second was chosen, to reduce the number of
calculations and to increase the frequency resolution.
With each frequency magnitude output, we used peak
picking to identify likely note fundamentals in the audio.
These fundamentals were then compared to a standard
tuning of 440 Hz, returning a tuning offset value. By
taking the average (mode) tuning value across the entire
song we found we could estimate the tuning of the entire
song with relative accuracy. This tuning offset is used to
calibrate our CQT for note extraction, further down the
pipeline.

Source Separation is part of processing of audio for
harmonic filtering and analysis by removing noise. Our
system uses Harmonic-Percussive Source Separation
(HPSS) to increase the harmonic resolution of the audio
track. We used Librosa's built-in HPSS algorithm for this
task.

Figure 4 shows the weighted harmonic mask applied to
the spectrogram of a signal to filter out the noisy
percussive portions of the signal. A similar mask for
percussive sounds can be generated but was not used by
our algorithm. This weighted mask is a matrix of
magnitudes between 1 and 0 that, when applied to a
spectrogram of the signal, removes frequency content
which has been deemed to be percussive and not tonally
relevant.

Figure 4: Spectrogram of a harmonic mask



Figure 5 shows an example of MIDI note magnitudes
returned from librosa before and after the HPSS noise
removal step. The blue plot is the original, and the orange
plot shows how the noise floor is reduced and harmonic
pitch resolution is increased. These pitch magnitudes are
used in the Chroma Pitch Class Profile matching module
to determine the chords.

Figure 5: Blue/Orange shows before/after noise removal

Key Detection is performed by frequency analysis of the
first and last 30 seconds of the song, using a CQT. This
spectrum is folded into a single chroma vector, which is
then compared to each maj and min key template, across
all keys. The highest scoring key is deemed to be the key
of the song, and the rest are ignored. The key templates
are shown below in figure 6:

Figure 6: Key Detection Pattern Matching

Beat Tracking is used by our system to determine
relative chord onsets. This process splits the music into
the temporal components of the chord progression, so that
the chords can be delivered one at a time to the Chord
Identification module for analysis. There are two methods
for this; onset-detection, based purely on the perceived
“attack” of new notes/chords, and tempo-detection, which
relies on predicting a repeated pattern of onsets (the
“beat” of the music).

In most music, chords change on the beat. As long as the
tempo is steady, the tempo-detection method will produce
reliable results. In the event of dramatic phrasings and
other tempo variation, however, this can lead to less
accurate outcomes, as discussed in Section 5.

Shown in Figure 7 are a collection of graphs
demonstrating the output of detected beats using the

tempo-invariant onset-detection module (tested on music
without a steady beat):

Figure 7: Beat Detection

Chroma Extraction is performed using a constant-Q
transform (CQT) and pitch class folding, with the
important step of extracting the bass note. We used
Librosa’s built in CQT, and provided the tuning offset
from our Tuning Estimation module. Our implementation
of the CQT looks at frequencies between 27.5Hz and
4434.92Hz, which correspond to the bottom and top notes
of a standard piano keyboard, respectively.

At this stage, before folding the frequency information
into a 12 note chroma, a bass note extraction is
performed. This function analyzes peaks in the lower
registers of the spectrum, midi notes 0 to 48, and
determines the most likely bass notes for this excerpt of



audio. This likelihood score is calculated from three
factors: absolute magnitude of the note, noise floor of the
surrounding frequency bins, and presence of 2nd and 3rd
harmonics (midi note +12 and +19). A sample output is
shown in Figure 7.5.

Figure 7.5: Bass note extraction

The function outputs the 3 highest scoring bass notes in
the spectrum, which are later used as a starting point for
chord identification.

Once the bass information has been extracted, the
spectrum is folded into a 12 note chroma. This chroma
represents the relative energy present for each pitch class,
and therefore the harmonic content of the audio except.

Chord Identification is the last stage of our pipeline and
uses Chroma PCP matching, calculating cosine similarity
between chroma vectors for known chords, and the
chroma vectors output by pitch-detection and
pitch-folding.

This module was designed first in the system and was
initially only capable of single-instrument chord
recognition from a piano dataset [15] of unambiguous

chords that include no background noise. Due to
difficulties obtaining audio to match data sets, we relied
on mostly manual annotation and evaluation to collect
our results. This is further explained in the results section
of our report.

As explained in Section 3, chords are formed from
intervals of notes and the notes themselves “wrap
around” every twelfth note of the chromatic scale (one
octave). As such, it is easy to “rotate” an interval
template around all twelve pitch classes to test for that
quality of chord (major, minor, etc) on all twelve starting
tonic notes, as shown in Figure 8 below:

Figure 8: Rotating a Major Triad template

The following Figures 9 and 10 are drawn from our CQT
pattern matching section of the Chord Identification
module. Figure 9 shows the expanded set of chords being
tested. Note that this only displays 24 chords; 12 Minor
and 12 Major chords. Recall that in the Background
section of this report chord vocabularies are introduced as
a hierarchical system with major and minor chords being
root nodes.

Figure 9: Known Major and Minor Chords

Figure 10, by contrast, shows intervallic templates that
can be rotated along the list of pitch classes, as described



above. This section of code allows for the detection of 84
separate chords: 12 each of Major, Minor, Diminished,
Augmented, Major 7th (currently commented out as
Major 7th chords are uncommon), Dominant 7th, and
Minor 7th.

Figure 10: Intervallic Chord Templates

In Figure 11 below, an E Major Chord is played from the
piano dataset and is matched as such because the peaks in
the pitch-class-profile best match the ones in the above
tables. Note that the stacked lines are the harmonics of
the notes at different frequencies.

Figure 11:

Some timestamps of the above match are displayed in the
following Figure 12:

Figure 12: Example of PCP Matches vs Time

The Combined System collects all of the above modules
into a single system (a single Python Notebook) totalling
644 lines of code.

This uses the extracted bass note as a basis for our PCP
matching, to reduce the number of chord candidates being
considered. Based on common practices and music
theory, we assume that the bass note is always going to be
a note from within the chord. For example, is the bass
note is a C# the chord could be any chord that contains a
C#. This narrows the scope of PCP matching and filters a
large amount of  noise from the results.

After receiving an array of likely chords from the PCP
matching, the results are further sorted according to the
detected key of the song. We first generate a set of chords
that are likely to appear, based on the result from the key
detection. Using this set of target chords, we prioritize
chords from the array that are likely to appear in that key.

5. RESULTS

We used three datasets during development. These were
the single chord piano dataset [15] used to test the
original Chord Identification module on its own, as well
as classical music from Bach [18] and an album of pop
genre music from the Killers [19], which were used to
test the final combined system.

5.1 POP MUSIC

To test chord recognition accuracy on modern pop music,
we used certain songs from the album “Hot Fuss” by The
Killers [19]. Due to our manual annotation system, we
were not able to test large amounts of data and are left
with incomplete results.

This analysis compared each output chord with a ground
truth, counting exact matches as correct and anything else
as incorrect. The total recall score across all songs tested
was 58.3%.

Visually, it was clear from our outputs that smoothing is
needed to improve results. Adjacent chords in an output
file would often share roots or bass notes, but differ
slightly in quality. These chords are often one single
chord in the ground truth, that involves embellishment or
small variations in arrangement. Smoothing would help
mitigate this type of error

5.2 CLASSICAL BACH

For testing chord recognition of instruments in classical
pieces, the following works from Bach were selected:



BWV {26,262,274,288} [18]. These pieces have sheet
music published but no official chord labels. As such, it
was necessary to formulate ground truth values by hand.
This was a difficult and labour-intensive process, since
the notation contains complex areas and had to be time
stamped manually by ear to correspond to the recordings.
Due to this difficulty, only 4 pieces were prepared for
analysis:

- BWV 26 and BWV 262 on Piano
- BWV 274 and BWV 288 on Organ

These four pieces comprised a total of 169 chords to be
found and identified.

The analysis recorded 4 types of results:

- Correctly-Identified Chords
- Incorrectly Identified Chords
- Missed Chords (chord listed in the ground truth

was not isolated by the beat-separation module)
- Phantom Chords (chords that were separated out

and analyzed despite not existing in the ground
truth)

The test was first carried out using the tempo-based beat
separation module, with the following results:

BWV: 26 262 274 288

Correct: 8 21 16 20

Incorrect: 32 23 12 21

Missed: 1 1 7 7

Phantom: 37 8 42 66

The test was then repeated, using the previous
tempo-invariant onset detection method of beat-finding:

BWV: 26 262 274 288

Correct: 9 26 17 18

Incorrect: 32 19 14 25

Missed: 0 0 4 5

Phantom: 23 12 5 12

The total recall score was thus roughly 38.5% using the
tempo-detection beat separation module (65/169), and
41.5% (70/169) for the previous onset-detection module.

All four Bach pieces featured expressive tempo variations
that posed difficulties to the tempo-detection algorithm.
In the first case, the rigid following of the pre-detected
tempo resulted in a greater number of missed chords than
in the second.

Additionally, Bach often employs out-of-chord passing
tones on up-beats with the result that the detected
“tempo” was often the eight note rather than the beat
quarter, resulting in greatly increased instances of
nonsense phantom chords. Even in the second case with
the tempo-invariant beat divider, these up-beats were
often strident enough to be picked out and analyzed on
their own.

Some of the mistakes were understandable misreadings -
A minor 7 (A, C, E, G) being misinterpreted as C major
(C, E, G) for example. Others were possibly due to the
recorded instrument being out of tune with itself (A major
(A, C#, E) was instead detected as A# diminished (A#,
C#, E -- if all three notes had been off by a half step, it
would be presumed this was an error with our tuning
detection module. With only one of them off, however, it
suggests the piano in the recording might have had its A
key tuned sharp).

And finally, it should be noted that a few of these
mistakes were due to the very key-interpretation intended
to aid in chord detection. Among other places, this can be
observed in BWV 288 at around 32.25. Bach adds an
“accidental” sharp, ending a phrase on a
technically-out-of-key A major chord. Our module,
which has deduced the piece is in the key of F (no C#),
concludes that A minor chords are much more likely than
A major ones and disbelieves its own “ears”, blithely
reporting an A minor chord.

6. DISCUSSION AND CONCLUSION

The pop results were a reasonable first attempt at a real
world application of this system. It’s clear that a number
of the modules in our pipeline could be adjusted to
benefit the pop results specifically.

For one, using tempo detection was a much more
accurate means of approximating chord onsets for the pop
genre. Given that the individual chord identification
performed well alone, we can deduce that improving
chord onset estimation even slightly would make
significant improvements to the whole system output.

Another area for improvement, previously mentioned,
would be chord smoothing. This would take adjacent



chords with related qualities and smooth the progression
of chord sequences according to probabilities. This is a
very standard step in ACR systems and was part of our
initial plan, but did not get implemented due to time
constraints.

In the context of the complex Bach pieces, two issues
come to the forefront. The first is the difficulty with
accurately dividing the beats into chords for analysis.
While dramatically-motivated tempo variations are harder
for a computer to deal with than a steady tempo, this is an
issue that can likely be dealt with by improving the
beat-detection algorithm.

The second issue, that of passing tones played with
weight equal to chord notes, requires further research as a
straightforward solution does not immediately present
itself. These notes can easily throw off the chord analysis
if included, but separating them out is difficult without
already knowing the chord to which they are being added.

Nonetheless, given the sheer number of chords available
to choose from (given a fully accurate beat separation, a
purely random classifier would have a recall of about
1.2%), roughly 40% correctness on such complex music
is an encouraging number.
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